European Academies Cale State Stat

EASAC work on the Circular Economy

Mike Norton EASAC Environment Program Director

What is EASAC?

- Collective voice of the National Academies of Science of the EU member states +2
- Source of *independent* scientific analysis and advice for policy-makers in the European institutions and EU societies
- National Science Academies in the EU:
 Networks of scientific excellence
 Shared task of science-based policy advice

2015 statement on Circular Economy

Provides natural and social science perspective

- •The concept of the 'circular economy'
- Quantitative estimates
- •Evaluating scarcity and assigning priorities
- •Barriers: why does the linear economy stay linear?
- Competitiveness considerations
- •New indicators
- General policy considerations
- Policy instruments

statement serverse

Circular economy: a commentary from the perspectives of the natural and social sciences

Summary

In May 2015, the European Academies' Science Advisory Council (EASAC) started a review of issues related to the 'circular economy'. The circular economy involves many aspects of science, technology and social science but this commentaries i intended to contribute to the debate between stakeholders on the principles and objectives of the European Commission's policy. This has been compiled by a Working Group of scientists and economists nominated by member academies of EASAC.

This commentary provides background on natural and social science aspects relevant to policy development on the circular economy; it may be used to inform debate on the principles and broad approach to the circular economy. It reviews the benefits foreseen for a circular economy and potential risks for the transition phase. In a world of increasing population and per capita consumption where existing levels of consumption of resources are already well above sustainable levels, improving the efficiency with which humanity user essources fa a priority However, barriers that stand in the way of a transition to a circular economy are substantial and increased by some current trends in corporate and consume behaviour. EASA accepts ther ationale for, and potential qualitative benefits (r), the circular economy. However, there are uncertainties over models used in quantifying the benefits, and questions remain over transition to a circular economy. Further research options to reduce these uncertainties are identified.

Underlying the barries to shifting from a linear to a circular economy is the failure of current pricing systems to fully integrate all costs (including social and environmental costs), which means that pricing systems are failing to transmit the necessary information to inform individual decisions. A research priority is thus to increase the pace at which these external costs can be introduced. Until this failure is remedied, nules and regulatory instruments may be unavoidable, but need to be carefully designed, taking into account fields of behavioural economics, and providing sufficient flexibility to allow companies to respond in the most efficient ways and to respond to rapid changes in technology and associated effects on product life cycles.

Specific points

- Increasing population and per capita consumption on top of existing levels of consumption of resources well above sustainable levels. Improving the efficiency with which humanity uses resources is a priority.
- Barriers to a transition to a circular economy are substantial, and increased by some current trends in corporate and consumer behaviour.
- Linear economy is the result of failure of current pricing systems to fully integrate all costs (including social and environmental costs), so fail to deliver 'correct' signals.
- EASAC accepts the conceptual benefits of the CE but sees uncertainties over models used in quantifying the benefits. Questions also over transition issues.
- There is potential for improved competitiveness and new markets, but there are also potential disadvantages from an economic theory. perspective where policies for a circular economy are applied only within the European Union. Needs to be embedded in trade rules/negotiations
- New indicators required and special measures may be needed for particularly critical elements required for key economy sectors. These issues emerged in the initial EC statement, thus EASAC decided to follow up with more detailed reports.

Working group members

Ful	l circular economy working group	Critical materials	Indicators
٠	Professor Gunter Stephan (University of Bern)	\checkmark	\checkmark
•	Dr Ioannis Agapitidis, Hellenic Recycling Organisation		\checkmark
•	Ms Geraldine A Cusack, Siemens Ireland		V
•	Dr Anni Huhtala, VATT Institute for Economic Research (Finland)		
•	Professor Mark van Loosdrecht, Delft University of Technology	\checkmark	
•	Professor Dr Ir Egbert Lox, Umicore, Belgium	V	
•	Dr Guiseppe Mininni, IRSA (Italian Water Research Institute)	V	V
٠	Professor Sture Öberg, University of Uppsala		V
٠	Professor Dr Ionut Purica, Romanian National Institute of Econor	nic Research	V
٠	Professor Kristin Vala Ragnarsdottir, University of Iceland	\checkmark	V
•	Professor Armin Reller, University of Augsburg	\checkmark	
•	Professor Baiba Rivza, Latvian Academy of Sciences		V
•	Professor Filipe Santos, University of Lisbon		
•	Professor Roger Sheldon, Delft University of Technology		
•	Professor Thomas Sterner, University of Gothenburg		
•	Professor Richard Tol, University of Sussex		
•	Professor Michael Norton, EASAC Environment Director	V	V

Joint Working Group Meeting Brussels, May 5 2016. Commission meeting (4 May) Peer reviewers nominated by Academies (Aug-Sept 2016) Endorsed by EASAC Academies Sept 2016.

Indicators

- What is the problem we are trying to solve?
- Dominance of GDP linked to linearity
- Can anything compete with GDP?
- Many attempts to find substitute indicator but no consensus yet.
- Introducing indicators for the circular economy

 part of efforts to move beyond GDP
 and to sustainable development goals

Circular economy indicators

Alternative Indicator	Abb	reviation	European Academies		
Better Life Index					
Ecological Footprint				ea sac	
Environmental Pressure Index				Science Advisory Council	
European Environment Agency Core Set of Indicators			CSI		
Genuine Progress Indicator					
Gross National Happiness Inde	ex	GNHI		GDP	
Happy Planet Index		HPI		Alternatives	
Human Development Index					
Index of Sustainable Economic Welfare			V		
Sustainable Development Ind	SDI				
World Values Survey					
	SDI THEME Socio-economic development		HEADLINE INDICATOR Real GDP per capita		
HEADLINE INDICATORS	Sustainable consumption and				
OF THE SUSTAINABLE	production		Resource productivity		
DEVELOPMENT INDICATOR (SDI) SET	Social inclusion		People at risk exclusion	of poverty or social	
	Demographic changes	changes employment		rate of older workers	
	Public health		Life expectancy and healthy life years		
				reenhouse gas emissions, and primary	
	Sustainable transport		energy consumption		
			Energy consumption of transport relative to GDP		
	Natural resources Common bird		d index		
	Global partnership Official development		opment assistance		
	Good governance None		None	one	

Potential Indicator sources

Science Advisory Counci

Indicator	Examples	Availability of data	Relevance to the				
type			CE				
Sustainable	Social economic development, sustainable	Voluntary based reporting via EU DG	Natural resources,				
development	consumption and production, social inclusion,	Energy (focused), European	sustainable				
	demographic changes, public health, climate	Sustainable Development Network	consumption and				
	change and energy, sustainable transport, natural	(ESDN); corporate sustainability	production				
	resources, global partnership, good governance	indicators (e.g. carbon disclosure)					
Environment	Agriculture, air pollution, biodiversity, climate	Regulatory based reporting via EEA	Waste generated,				
	change, energy, fisheries, land and soils,	cores indicators and country-specific	packaging waste				
	transport, waste, water	statistics	recycling				
Material	DE, DMC, DMI, PTB, NAS, DPO, TMR, TDO	Eurostat, SERI	All				
Flow							
Societal	Sharing, municipal waste recycle, waste generated	National and voluntary organisation	All				
behaviour	per capita (total and segregated),	statistics					
	environmental/resource taxation						
Organisation	Material flow accounting in organisations,	Private sector voluntary reporting via	All				
al behaviour	remanufacturing, use of recycled raw materials,	EU Forum for Manufacturing; VDMA					
	eco-innovation, per capita statistics (e.g.	(German Engineering Federation);					
	reduction in waste generation per capita)	etc.					
Economy	Resource productivity recycling inductor groop	Eurostat	All				
Economy	Resource productivity, recycling industry, green		All				
performance	jobs, waste generation/GDP, 'transformation of	EU Resource Efficiency Scoreboard					
	the economy'						

No shortage so what criteria? easac

European Academies

- You can't manage what you cannot measure, nor can you review progress without monitoring it, so indicators are an essential part of policy.
- Not just the simplest to obtain but we need "intelligent" indicators
- Should inform and influence stakeholders AND public, media and policymakers
- Should aim to show benefits of circularity -both environmental and economic
- Some sets already in use in other countries
- Look for mutual reinforcement with other trends (e.g. sustainable reporting)
- Use for monitoring the performance of markets in the recycling business and address regulatory barriers, such as those related to transforming waste into secondary raw materials.

Critical materials report

European Academies Carlos Constant Academies Carlos Constant Academies Carlos Constant Academies Carlos Constant Academies Science Advisory Council

- What is the problem we are trying to solve?
- Bottom line is that high technology has made us dependent on relatively small quantities of specific elements-not just on provision of bulk raw materials (iron, copper etc.)
- Also these areas are ones in which our future economic development is expected to depend-low carbon, information and communication technologies etc.
- So what special measures are required?

Key questions

- How do we select critical materials?
- What criteria do we use?
- How do we maximise potential sources within the EU?
- How do we minimise avoidable losses?

Priorities for critical materials for a circular economy

Aspects covered

- Factors to be considered in defining critical materials. Basic supply risk and importance to the economy PLUS
 - Environmental impacts of extraction and processing (both within and outside the EU)
 - Substitution and recycling rates
 - Impending scarcity
- Securing future critical materials
 - Critical materials supply
 - Improving recycle rates

Particular focus-recycling

- Currently major leakage from end-of-life goods due to inefficient return and insufficient use of technologically advanced recycling
- Major implications for consumer-retailer relationship and for manufacturers extended producer responsibilities. Efficient country models exist.
- Action needed at all stages from original design, through end-of-life collection and sorting to ensuring critical metals recycling infrastructure
- Should attempt to harmonise consumer innovation trends with the needs of circularity

Special factors

European Academies

Cal Sac Science Advisory Counci

Web of metals

•Complex processes

European Academies Cale State Stat

Thank you for listening!